Doob–Dynkin lemma
In mathematics, the Doob–Dynkin lemma, named after Joseph Doob and Eugene Dynkin, is a statement in probability theory that characterizes the situation when one random variable is a function of another, in terms of measurability and algebras.
Statement of the lemma
Let and be the algebra generated by . Then is measurable if and only if for some Borel measurable function .
References
- A. Bobrowski: Functional analysis for probability and stochastic processes: an introduction, Cambridge University Press (2005), ISBN 0-521-83166-0
- M. M. Rao, R. J. Swift : Probability Theory with Applications, Mathematics and Its Applications, Band 582, Springer-Verlag (2006), ISBN 0-387-27730-7
See also